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1. Introduction.

We have recently been studying the
performance of wavefront algorithms
implemented using message passing on 2-
dimensional logical processor arrays [1,2].
Wavefront algorithms are ubiquitous in parallel
computing, since they represent a means of
enabling parallelism in computations that contain
recurrences.  Our particular interest in wavefront
algorithms derives from their use in discrete
ordinates neutral particle transport [3]
computations, but other important uses are well
known [4-7].

The basis of wavefront parallelism is the data
dependence graph shown in Figure 1, in which
the nodes may represent either physical grid
points or logical processors.  In the latter case, a
computation progresses as a wavefront and
"scans" through a processor grid with pairs of
processors sending and receiving boundary data
required in order to update a portion of the
physical mesh.  Those processors within each
wavefront, i.e., those on a diagonal, are
algorithmically independent.  Intuitively, then,
the nominal benefit of wavefront parallelism is
related to the (continuously-changing) length of
a diagonal.  However, additional concurrency
can be achieved by "blocking" the computation,
resulting in more wavefront “sweeps” using
smaller computational subgrids.  This reduces
processor idle time that accumulates as
processors await their turn to compute, but
requires that processors communicate more
often.  This tradeoff between processor
utilization and communication requirements is
characteristics of wavefront algorithms. An
important task of performance models such as
those described in [1,2] and the one proposed in
this paper is to capture this tradeoff and the
influence of the blocking parameters on the
overall runtime of the application.

Figure 1. Schematic of wavefront
parallelism

A key component of our work, then, has been
to model performance of wavefront algorithms to
predict overall performance as well as optimal
blocking sizes given a machine's computation
and communication parameters.  In previous
papers [1,2] we developed a closed-end,
analytical model for the parallel performance of
wavefront algorithms implemented on a specific
class of parallel computers - those in which a
logical processor mesh could be embedded into
the machine topology such that each mesh node
is mapped to a unique processor and each mesh
edge is mapped to a unique router link.  When
this condition is met, there is a high level of
message concurrency across the processor grid.
We now refer to this model as the "MPP" case,
since it accurately describes machines such as
the CRAY T3E and the older IBM RS/6000-SP
(without SMP nodes), both of which have
congestion-free connectivity between any
logically adjacent nodes.  This model describes a
pipelined series of wavefronts with a
characteristic (and constant) pipeline length and
repetition delay.

In this paper we concern ourselves with the
generalization of this model when the network
topology is not uniform, such as in a cluster of
SMPs interconnected by a network of lower



dimensionality.  Here, a wavefront can arrive at
an inter-SMP boundary and be delayed, because
a message from a previous wavefront is already
using needed links/wires between SMP hosts.
The model should capture how this decreased
connectivity affects the wavefront pipeline
parameters (pipeline length and repetition delay),
the message concurrency, and thus, overall
performance, compared to the simpler MPP case.
The work has immediate relevance to the DOE
Accelerated Strategic Computing Initiative,
which has embraced clustered SMP technology
as the primary architecture used to build multi-
TeraOp systems.  We validate our new model
using both simulation experiments and
experimental data from LANL’s cluster of SGI
Origin2000.

2. Review of MPP Model and Basic
Description of the SMP Cluster
Case.

The point of departure for our model is a
pipelined wavefront abstraction [1,2], in which
Nsweep wavefronts scan the Px X Py processor
grid, each requiring Ns steps, with a repetition
delay of d between each wavefront.  The total
number of steps for all wavefronts is given by
equation (1).

Steps = Ns + d( Nsweep − 1)      (1)

The first wavefront exits the pipeline after Ns

stages and subsequent waves exit at the rate of
1/d.  The challenge is to find Ns and d for both
computation and communication.  In reference
[1] we showed that these are captured completely
in equations (2) and (3).

Tcomp  = [(Px + Py – 1) + (Nsweep – 1)] * Tcpu          (2)

Tcomm
  = [2(Px + Py – 2) + 4(Nsweep – 1)]*Tmsg     (3)

Thus, the number of steps in the computation
pipeline is simply the number of diagonals in the
processor array. The cost of each step, Tcomp, is a
function of the number of grid points per
processor (“subgrid”) and some characteristic
floating-point computation rate, Rflops. The
repetition delay for computation, dcomp, is 1 (i.e.,
the time for completing one diagonal in the
sweep). The cost of any single communication
stage is the time of a one-way, nearest neighbor
communication.  This time, for a message of
length Nmsg, is given by:

B

N
tT msg

msg += 0                                  (4)

where t0 is the message startup time and B is
bandwidth.

A key element of the communication model is
that the repetition delay between communication
pipelines is 4, because, as shown in Figure 2,  a
message sent from any processor (say processor
0) to its east neighbor (processor 1) on the
second sweep cannot be initiated until processor
1 completes its communication with its south
neighbor (processor 3) from the first sweep.

For this model, we assume three things: (1)
blocking synchronous communications; (2)
messages initiated by the same processor occur
sequentially in time and messages must be
received in the same order that they are sent; (3)
as implemented, the order of receives is first
from the west, then from the north, and the order
of sends is first to the east and then to the south.
However, there is no loss of generality by
making these assumptions; i.e., the algorithm is
"self-synchronizing," so the use of blocking
send/receives does not matter, and changing the
order of sends/receives leads to the same
concurrency (and number of steps) for
communications.

Figure 2. Repetition delay for the
communication pipeline in the MPP case

When the network topology is not uniform, as
in a case of a cluster of SMPs interconnected by
a network of lower dimensionality, disruption in
the wavefront pipeline may occur so that
otherwise-independent wavefronts may
"collide”, i.e. wavefronts competing for a link
are delayed. The abstraction we use to describe
wavefronts on clusters of SMPs is a “pipeline
with bottlenecks”. When pipelined wavefronts
are delayed at a bottleneck (the inter-SMP
boundary), subsequent wavefronts may be
delayed, too.  This delay can alter the frequency
of the pipeline, and can propagate back up to the
processor that initiated the wavefront.  We have
found that this back-propagation takes place
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during some transitional number of wavefronts.
A steady-state is then reached in which
wavefronts may scan the processor array at a
slower rate compared with the MPP case and
with a variable and periodic frequency.  We now
provide a rigorous, quantitative analysis of this
process, the object of which is a modified
version of equations (2) and (3), giving the
number of steps required to scan the
bottlenecked wavefront pipeline.  We anticipate
that the geometry of the SMPs and the specifics
of the inter-SMPs connectivity will ultimately
dictate the parameters of the pipeline.  Note, we
deliberately use the conditional "may" in the
previous sentences.  An important part of this
work is to discover the conditions under which
performance reverts to the original MPP case.

3.  Complexity Analysis. Model
Development.

We now consider a logical m X n cluster of
SMP hosts, each of which is a logical Sx by Sy
system with full connectivity.  Note that this
representation is the logical view of the
processor configuration "seen" by our discrete
ordinates particle transport application, which
uses a 2-D processor domain decomposition.
The SMP hosts are linked to one another via a
connection scheme that allows Lx concurrent
messages to pass in the x direction and Ly

concurrent messages to pass in the y direction.
Lower-dimensional connectivity implies that Lx

or Ly < max(Sx, Sy). This is schematically
depicted in Figure 3 for a 2 X 2 cluster, with
Lx=2 and Ly=4. Throughout this paper,
processors are counted contiguously.  For
example, the upper-left processor of the (2,1)
SMP in Figure 3 is numbered (1, Sy+1) and the
corner processor of the (2,2) SMP is numbered
(Sx+1, Sy+1).  When the number of links in each
direction is equal, we use L = Lx = Ly.

Figure 3. Logical representation of a 2X2
cluster of SMPs

In order to simplify presentation, we will use
the following intuitive facts:
a) Collisions take place in both directions (x

and y). However, due to the interweaving of
the x- and y-direction communication steps,
analysis of collisions in the y direction
(which ends later than the x direction due to
the posting first of the east-west message
receive) is sufficient for deriving the
formula for the overall number of
communication steps.

b) Collisions affecting the communication
pipeline take place only on the first inter-
SMP link in either direction. Corollary: if a
collision didn’t take place in the first
communication step in which that wave is
involved at an inter-SMP boundary, that
wave will be collision-free for the rest of its
passage through the processor array.

c) The collision pattern (and implicitly the
wavefront dynamics) is dictated by the first
SMP (and its boundaries) the wave scans.
The waves will then move unimpeded
through all the other SMPs and their
boundaries. This is a direct consequence of
the pipelining in the pipeline with
bottlenecks model.

We also assume that waves cannot collide
back; i.e. waves cannot be influenced by
subsequent waves.  This assumption does not
change the generality of the analysis, and we will
return to this statement for complete
clarification.

Our development of the model proceeds by
examining the cases where collisions occur for
the first time, by induction. We begin by
modifying equation (1), which gives the number
of communication steps for Nsweep wavefronts to
scan the grid, so that it instead gives the number
of communication steps for the Ith wavefront to
scan the first SMP:

Nsteps=2(Px-1) +2(Py-1) + 4(I-1)               (5)

The first inter-SMP boundary in the y-
direction is between processors Sy and Sy+1.
Concentrating now on the y-boundary between
SMPs, we note that equation (5) suggests that all
communications in the y-direction take place on
even-numbered timesteps. The first wavefront
will move unimpeded through the entire
processor grid, with all its communication steps
across the boundary and elsewhere in the y-
direction being “even-labeled” (even numbers).
The second wavefront will be collision-free

(1,1) (1,2)

(2,2)(2,1)



Figure 4. Emulation of the communication steps on

Figure 4. Emulation of the communication steps on 4 wavefronts among 4 clusters of 4
wavefronts among 4 clusters of SMPs each containing 5 X 5 processors. Two links in each
direction are assumed between the SMPs. The gray areas show the SMPs, the white area
is the inter-SMPs boundary. The wavefronts move from the upper left corner to the lower
right corner of the processor array. The numbers shown represent the communication
steps at which messages are exchanged between those processors.

provided that L > 1.  In general, the first L
waves will be collision-free, with the number of
communication steps required for wavefront I to
reach processor (Sx+1, Sy+1) given by:

SI =2Sy + 2Sx + 4(I-1) I <= L      (6)

This can be seen in Figure 4 obtained by
emulation: the first 2 waves are collision-free
when L=2, as shown by the delay of 4 between
these waves at the inter-SMP boundaries.

Wavefront number L+1 will collide, provided
that:

2Sy+4(L+1-1) <= 2Sy+4(1-1) +2Sx     (6a)

stating that the timestep on the first link in wave
L+1 needs to be at most equal to the timestep in
the first wave at the end of the boundary for a

collision to occur. This is shown in figure 4 by
the third wavefront, which would communicate
over the first inter-SMP link in the y-direction at

timestep 18. However, given the availability of
two links only, this third wave collides, as the
two links are taken by the first and second
wavefront communicating at timestep 18 on the
5th and 3rd link respectively.

(6a) leads to:

Sx >= 2L                                    (7)

Equation (7) is revealing, because it shows
that for our algorithm full connectivity is not
required for wavefronts to scan unimpeded.  In
fact, all that is required is that there be at least
half as many links as there are processors on the
(logical) SMP boundary, in which case the
analysis trivially reduces to the MPP case.
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Figure 5. The inter-SMP boundary in the y-direction for 8 X 8 processors within the SMP.
The dotted lines arrows show the inter-SMP boundary in the x-direction.

We now consider those cases in which
condition (7) is met and collisions occur.  Now,
the timestep at which wavefront L+1 crosses the
inter-SMP boundary is bumped up by one.  This
changes the parity of timesteps in the y-direction,
meaning that wave L+1 will cross the boundary
on an odd timestep.  Recall that the first L
wavefronts are collision-free and of even parity.
The next L wavefronts will necessarily preserve
the odd parity achieved by wavefront L+1,
because the differential between two consecutive
waves is always equal to 4. For this group of
waves with odd parity, the number of
communication steps to reach processor (Sx+1,
Sy+1) is given by:

SI =2Sy + 2Sx + 4(I-1) +1, L+1<= I <=2L  (8)

This is illustrated in Figure 4 by waves
number 3 and 4, which switch from even to odd
timesteps when communicating across the SMPs
in the y-direction.

To continue the discussion we assume for the
moment that Sx > Sy.  We’ll comment on this
restriction at the end of the chapter.

The third group of waves, beginning with
wavefront 2L+1, will be bumped up again,
because at this point, the L waves from the
second group are still utilizing the links. This
third group of L waves will switch back to even
parity. The condition:

2Sy+4(2L+1-1)+1 +1  <= 2Sy+2Sx+4(1-1),  (9)

checking if the timestep on the first link at the
inter-SMP boundary, as given by equation (8)
and incremented by 1 to revert to even-labeled
timesteps, is lower than or equal to the timestep
of the first wavefront in the first group of (even-
labeled) waves on the first link out of the SMP,
leads to 

Sx>=4L+1    (10)

Where (10) is not satisfied, i.e. collisions with
the first group of even-labeled waves do not
occur, the total number of steps is given by:

SI =2Sy+2Sx+4(I-1)+1+1 2L+1<=I<=3L    (11)

By induction we conclude that all subsequent
groups of L waves will alternate parity in a
similar fashion, with the total number of steps
given by:

SI =2Sy+2Sx+4(I-1) +[int((I-1)/L)] with
I=1,Nsweeps     (12)

These formulae apply for the waves depicted
in Figure 4, because equation (10) is not met
when Sx = Sy = 5 and L = 2.

If (10) is satisfied, as in the case depicted in
Figure 5, then the third group of L waves will
begin on an even time step that is equal to the
time step at which the first wave in the previous
group of the same parity (in this case wave 1)
reached the first intra-SMP link.

In Figure 5, this is shown by the third
wavefront communicating over the first link at
timestep 32, as wavefronts 1 and 2 communicate
on all timesteps between 25 and 31 over the
single inter-SMP link available. Note that Figure
5 only depicts the y-boundary between two
clusters of SMPs having 8 X 8 processors each,
with L=1.

The timestep on which this third group of L
waves will end on is given by

SI =2Sy+2Sx+2Sx with  2L+1<=I<=3L    (13)

Generally, when (10) is satisfied, the first
wave of each even group ends at:

SI =2Sy +2Sx + [int((I-1)/ L)]Sx with
I=1,2L+1,4L+1…     (14)

and the first wave of each odd group ends at:
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SI =2Sy +2Sx +4(L-1)+5+[int((I-1)/ L)-1]Sx

with I=L+1,3L+1,5L+1…    (15)

Obviously, the timestep for all the other L-1
waves in each group are obtained by adding 4 to
the appropriate equation (14) or (15) for each
wave in the group.

In summary, when equation (10) is false then
equations (6), (8), and (13) are relevant. When
equation (10) is true, then equations (6), (8), (14)
and (15) apply.

The number of time steps needed for one
wavefront to scan the entire cluster of SMPs is
given by:

SI + (m-2)*2Sx +(n-2)*2Sy + 2(Sx-1)+2(Sy-1). (16)

If the cluster is unidimensional then (16)
becomes:

SI
’ + (m-2)*2Sx + 2(Sx-1)+2(Sy-1) when  n =1

   (17)

where SI
’ is the appropriate SI without the 2Sy

term.
When m =1 then the number of

communication steps is given by:

SI
’ +(n-2)*2Sy + 2(Sx-1)+2(Sy-1)    (18)

where SI
’ is the appropriate SI without the 2Sx

term.
If the number of links in the x-direction (Lx) is

different than the number of links in the y-
direction Ly , then L = min(Lx, Ly).

Previously, we anticipated that a steady-state
regime for the movement of the wavefronts
would be achieved after a transitional period.
The number of groups of wavefronts in the
transitional period is min (Sx,Sy) + 1.  This is
illustrated in Figure 6, where the number of
wavefronts in each group is 1 (since Lx=1), and
the number of transitional groups as seen in the
figure is 4 (equal to Sx + 1). Only after 4
wavefronts the repetition delay between
wavefronts becomes equal to the one at the inter-
SMP boundary.

When L=Sy=Sx, then (3) is not satisfied and
the entire analysis reduces to the MPP case
described in [1,2] and summarized by equation
(2).

The condition (10) was obtained for the case
when Sx > Sy. In fact, generally the condition is:
max(Sx , Sy ) > 4* min(Lx, Ly) + 1 and the factor
multiplying the int function in equations (16) and
(17) is max(Sx , Sy ) instead of Sx .

The characteristics of any pipeline model are
apparent for this case of a pipeline with
bottlenecks. We note that equations (12), (16)
and (17) all contain two distinct parts: one
independent of I and one dependent on I.  The I-
independent part represents the number of steps
in each wavefront, while the I-dependent part
represents the pipeline frequency and contains
the total number of wavefronts.  The legitimacy
of the pipeline with bottleneck model proposed
is now proven.

An interesting consequence, alluded to
earlier, is that when steady-state is reached and
(10) is also satisfied, the repetition delay that
occurs when even-parity wavefronts follow odd-
parity wavefronts will be different than the delay
that occurs when odd-parity wavefronts follow
even-parity wavefronts. Thus, the overall
frequency of the pipelined wavefronts is variable
and periodic. If (10) is not satisfied, then the
repetition delay between groups of even and odd
timesteps and groups of odd and even timesteps
is constant and equal to 5 (from  eqn (12)).

Finally, we assumed that wavefronts cannot
collide back and claimed that the generality of
the analysis is not affected by this. If the
assumption were not true, the only consequence
would be that wavefronts in a group of the same
parity would no longer be contiguous, and would
be interspersed with wavefronts belonging to a
group of a different parity.  The analysis would
be greatly complicated, whereas the end result
would be the same.

4. Experimental testbed

“Blue Mountain” at the Los Alamos National
Laboratory is a cluster of 48 Origin 2000 SMPs
each equipped with 128 processors, for a total of
6144 processors. The communication fabric
utilized to connect these building blocks is made
of HiPPI 800 (High Performance Parallel
Interface) network interfaces and switches [7].
The network topology is designed in such a way
that SMPs are directly interconnected.

The interconnection diagram for 6 SMPs is
depicted in Figure 7. In the logical representation
utilized in the previous chapter, and depicted in
Figure 3, the interconnect in Figure 7 amounts to
Lx = Ly = 2.

HiPPI network interfaces are unidirectional
channels with a peak bandwidth of 100 MB/s. A
logical bi-directional channel is set up by
bundling two HiPPI channels together. On the



Figure 5. The inter-SMP boundary in the y-direction for 8 X 8 processors within the SMP.
The dotted lines arrows show the inter-SMP boundary in the x-direction.

sending side, the HiPPI interface provides a
direct memory access (DMA) read engine that
can move data from the SMP to the HiPPI link.
The interface is controlled by a MIPS R3000
processor. The receiving side has a symmetric
layout, with a DMA write engine and a
communication processor. The HiPPI interface
provides a fixed number of virtual endpoints, 8
in the current implementation. Flow-control is
performed at packet-level.

Application-level communication uses an
implementation of MPI specifically tailored for
HiPPI. MPI messages are packetized using a
chunk size of 16KB. Messages can be striped
over multiple HiPPI links (i.e., an MPI message
larger than 16KB can be fragmented in packets

and these packets may be sent over different
HiPPI interfaces).

The MPI implementation allows three HiPPI
channel allocation policies: deterministic,
adaptive and round-robin. With the deterministic
policy each message is always routed to the same
HiPPI interface, while the adaptive policy picks
the least loaded interface. The round robin policy
distributes the traffic across the available
interfaces using a user-defined order. In the rest
of this paper we will consider the default policy,
the adaptive one.

Due to the high cost of re-mapping the
physical addresses on the HiPPI card (larger than
1 ms), and the limitations on addressing the
whole physical memory on an SMP, the MPI
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implementation first copies the packet in a
temporary buffer area, both on the sending and
the receiving side. Each message is first copied
from the user space to the first buffer on the
sending side, then to the buffer on the receiving
side and finally to the user space of the receiver.

SMP SMP

HiPPI

SMP

SMP

SMP

SMP

HiPPI

HiPPI

HiPPI

Figure 7. Connectivity diagram for 6
SMPs. Each packet can be sent from an
SMP to any other SMP passing through a
single HiPPI switch. Multiple paths are
provided by different HiPPI switches

4.1 Communication Performance of the
HiPPI Interfaces

To expose the communication characteristics
of the MPI implementation and of the underlying
hardware, we run a benchmark that analyzes the
actual communication bandwidth as a function of
the message size and the number of processes
involved in the communication. The goal is to
generate the “fingerprint” of communication
over HiPPI.

The benchmark consists of two main loops. In
the outer loop, we define two sets of processes of
the same size, ranging from 2 to 128 processes.
All of the processes in each set are bound to the
same SMP. Each process in the first set sends
messages to a partner process in the second set.
The communication pattern generated by this
benchmark is unidirectional, as is the one in a
wavefront algorithm, where all processes in one
SMP propagate unidirectional waves to the
neighboring SMPs. In the inner loop of the
benchmark we vary the communication
granularity, i.e., the message size. The
experimental results are shown in Figure 8. The
graph shows the global bandwidth achieved by
the collective communication pattern as a
function of the message size and the number of
pairs of processes involved.

Along the “Message size” axis, we can first
identify a region, for messages smaller than 2048
bytes, where the communication pattern is
largely dominated by the startup latency. This
region is highlighted in the graph by the “Small
message granularity” arrow.
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Figure 8. Inter-SMP communication
performance over HiPPI links.

The second region is delimited by messages
ranging from 32KB to approximately 1MB. In
this region the global bandwidth increases
linearly with the message size, up to a maximum
of about 70 MB/s per each individual HiPPI link.
For larger messages (above 1 MB) performance
degrades, due to buffer memory allocation and
coherence protocols problems. This region is
identified by the “Memory problems” arrow. In
interpreting the data along the “Pairs of
Processes” axis, for a  number of communicating
pairs of processes larger than 16, the overhead
introduced by the HiPPI arbitration protocol
limits the communication throughput. For a
small number of communicating pairs the
available bandwidth is lower because the HiPPI
communication protocol cannot efficiently
stream a single packet over multiple links.

The overall best operating region is for
messages of about 1 MB and between 8 and 16
pairs of processes.

5. Validation of the model

In this section we present experimental data
to validate the proposed model for the
performance of wavefront algorithms on clusters
of SMPs.

The data presented was collected on the
Origin 2000 cluster described in section 4. Our
vehicle for these studies is a “compact



application” called SWEEP3D [3,1], a time-
independent, Cartesian-grid, single-group,
“discrete ordinates” deterministic particle
transport code taken from the DOE Accelerated
Strategic Computing Initiative (ASCI) workload.
SWEEP3D represents the core of a widely
utilized method of solving the Boltzmann
transport equation. Estimates are that
deterministic particle transport accounts for 50-
80% of the execution time of many realistic
simulations on current DOE systems.

We are using a fixed subgrid size per
processor in all the runs. Its size of 8 X 8 X 320
was obtained based on the 2D processor
decomposition described in Chapter 2 and on an
estimate of the largest problem size that can be
computed on the full machine configuration
described in Chapter 4. Given the subgrid size
selected, the size of the messages is 38 Kbytes.
From figure 8, the bandwidth corresponding to
this message size is 30 Mbytes/s, the value we
used in our model. A measured value of 150 V
for the latency over the HiPPI link was utilized.
The number of links L is 4, corresponding to a
connectivity of 8 HiPPI links connecting the
SMP boxes.

Figures 9, 10 and 11 present the runtime of
SWEEP3D on clusters of 2 X 2, 3 X 3 and 4 X 4
Origin 2000 boxes, respectively. The processor
configuration inside each SMP box ranges from
2 X 2 to 8 X 8, up to a total of 1024 processors,
the largest machine configuration available to us.

Figure 9. Validation on a 2 X 2 cluster

The model validates well for the 3 X 3 and 4
X 4 cluster configuration, with the exception of
one data point in figure 11. As noted by other
authors too [9], timing on Origin 2000 machines
is a highly idiosyncratic task mainly due to
memory placement in its DSM scheme. Memory
locality in DSMs directly impacts performance
of communication libraries. HiPPI availability is
another major source of timing instability, as
there is no mechanism for insuring standalone

over HiPPI. Contention for HiPPI links from
applications running on other SMP boxes in the
system can impact the communication time.

We assume that given the shorter
communication times in the 2 X 2 case depicted
in figure 9, contention for HiPPI plays a major
role in the noisier data compared to figure 10 and
11. None of the measurements was done in
standalone.

Figure 10. Validation on a 3 X 3 cluster.

Figure 11. Validation on a 4 X 4 cluster.

6. Conclusions

We proposed a closed-form analytical model
for the performance of wavefront algorithms on
clusters of SMPs. The model represents a
generalization of a previously proposed model
applicable to MPP architectures only.

We validated the model on a cluster of Origin
2000 machines, up to a total of 1024 processors.
The data supports the validity of the model for
all cluster configurations.

The lower-dimensionality of the network
topology in a cluster of SMPs, compared to the
network in an MPP has a profound impact on the
communication performance in the wavefront
applications. The model we proposed and
validated shows that the impact is not only due
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to communication parameter changes (as in the
different values for the latency and bandwidth
across SMP boxes compared to the values inside
a SMP box), but more importantly in
communication pattern changes. We are not
aware of any other performance model of a full
application that exposes the algorithmic and
performance changes in the application as a
result of modifications at the parallel architecture
level.

In future work we plan on applying the model
to predict performance of very-large scale
computations using wavefront algorithms taken
from the ASCI workload on Tera-scale
architectures organized as clusters of SMPs and
analyze and contrast their performance to that of
the same applications running on MPP parallel
architectures. Such studies can offer significant
insight as point design studies for the
architecture of parallel systems.
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